

Abstract— Given an image stack, instead of requiring the
whole 3D model, researchers may be interested in the local 3D
structure of the specimens. Partial 3D component retrieval from
2D image slices represents a difficult and challenging problem.
To group related objects on different layers of image slices,
sequential matching of adjacent 2D objects has to be
performed. In this paper we propose a new approach for object
contour matching and partial 3D component retrieval based on
hierarchical contour structure. Object matching involves heavy
computing and is time consuming. We designed two parallel
algorithms for image object matching and partially image
component retrieval based on the contour structure using MPI.
The experimental results show the contour structure model is
suitable for 3D reconstruction from 2D image slices and our
parallel algorithms achieve a good speedup.

Index Terms— 3D reconstruction, edge detection,
segmentation, 3D component retrieval, neuron confocal image

I. INTRODUCTION

D reconstruction of biological structures from image
slices has been widely used in biological, biomedical

research as well as disease diagnosis and treatment [1].
Many 3D reconstruction software packages have been
developed in the recent years, including NEUROLUCIDA
[2], a semi 3D reconstruction package for neuron
anatomical analysis, and 3D-Doctor [3], a vector based
architecture for 3D modeling. A shortcoming of these
commercial products is that the new created 3D object lacks
the capability of 3D component partial retrieval and is hard
to convert 2D image slices into standard database
automatically.

 In this paper, we provide a new method for 3D
reconstruction and 3D partial retrieval using a contour data
structure. The basic idea is, for each image stack, we first
segment the objects to get the object contours from
individual image slices and then link the related contours on
the adjacent image slices. That is, we have two stages: a
separating stage, which divides individual image slices into
object contours, and a grouping stage, which links the
related object contours on the adjacent image slices.

In the first stage, object contours are extracted from
image slices and converted into an xml database. In the xml
database, each contour is represented by a node. Each node
has several elements which represent contour’s features,
including contour layer, length, area, centroid, moments and
coordinates of all the pixels on the contour. In this way,

S.O. Belkasim, Y. Li and X. Chen are with the Department of Computer
Science, Georgia State University, P.O. Box 3994, Atlanta, GA 30302-3994,
USA (e-mail: sbelkasim@cs.gsu.edu, yli11@gsu.edu, and xchen8@gsu.edu

instead of having to interact with raw image data, the
following algorithm only needs to take the xml database as
the input. In this stage, each image slice is divided into
several objects which are considered not belonging to the
same 3D component.

Next step, for each object contour, we decide if there is a
similar object contour on its neighbor slice. If we find one,
we will make a link between them and the xml database is
updated accordingly. The linking information of the object
contour is represented by the elements of its corresponding
node in xml database. In this stage, two adjacent image
slices are linked by those object contours which are
considered belonging to the same 3D component.

Now, the xml database is made of several tree structures.
Each tree structure is a 3D component. Comparing with
original image slices, the xml database is easy to maintain
and is convenient for 3D reconstruction and partial 3D
component retrieval.
 Object contour matching requires heavy mathematical
computation, which is time consuming. We also parallize
the algorithms and achieve good speedups.

 The paper is organized as follows: In Section II, we
introduce image slice segmentation. In Section III, we
introduce contour matching between adjacent slices. In
Section IV, we introduce xml image database and 3D object
reconstruction and partial 3D retrieval. The experimental
result is discussed in section V.

II. IMAGE SLICE SEGMENTATION

In this project, since we need not only reconstruct the 3D
model but also implement 3D component segmentation for
3D partial retrieval, a novel tree mapped data structure is
proposed using contours. The procedure to map the whole
image stack data set into the new tree structure can be
divided into two stages: separating and grouping. In this
section we will discuss the first stage. The separating stage
creates xml contour database for each image slice. This
process includes image enhancement, optimal thresholding,
edge detection, and object contour segmentation. The
segmented image objects are saved as boundary contour
coordinates and sequentially ordered to form a hierarchical
xml database for each image slice. The data structure has a
format similar to the one described in Fig. 1 where the
images are divided into sequentially ordered contours. The
same procedure is repeated for every image slice of 2D
image stacks.

Several methods can be effectively used to detect edges
[4] [5]. The main problem with these methods is the lack of

Partial 3D Component Retrieval from 2D Image Slices Using Contour Structure

 Saeid Belkasim, Yong Li and Xiujuan Chen

3

continuity of edges, which requires post-processing to link
the broken edges. The linking algorithms may introduce
unnecessary ambiguity and incorrect links of noisy data. In
this project, we use automatic segmentation method
introduced in [6] [7]. The optimum automatic thresholding
procedure is combined with edge detection to produce a
continuously connected object border and leads to a fully
segmented image.

(a)

(b)

Fig. 1. (a) The sequential contour assignment (b) The hierarchical tree data
structure representation of (a)

After implementing optimum thresholding, we obtain the

binary data for each image slice. Next, we use an 8-
connective path template to link contour pixels of the object
boundary. The contour is recognized by the coordinators of
its pixels and saved as an object node in the xml database.
We also use a contour length filter to remove the tiny
contours, which are considered to be noise. Contour length
filter is not only useful for image noise removal but also
very helpful to simplify the contour matching process [8]. In
this stage, original image files are one-time processed and
stored in an xml file. Comparing with raw image files, the
xml database is better for the image retrieval and analysis.
Since segmented image object boundary contours are the
basic units in the database, it is convenient for us to extract
the information in which we are interested from the
database instead of handling the whole image files. Fig. 2
summarizes the above steps.

Fig. 2 Flowchart of image stack preprocessing

III. CONTOUR MATCHING BETWEEN ADJACENT SLICES

In the contour data structure, 2D images are stored in the
xml database in a sequential order, slice by slice. Fig. 3
displays two adjacent confocal microscopic image slices of
crayfish neuron and their corresponding contours
regenerated from the xml database. It is worth noticing here
that every image regardless of its complexity can be
represented with a contour data structure. The main
advantage of using contour data structures is that it can be
efficiently used in finding the relationship between objects
on adjacent layers. For example, in Fig. 3, the pointed
contours obviously belong to the same 3D component and
this relationship is represented as a link element in the xml
database.

The grouping stage is to connect the object contours on
the adjacent image slices and map the whole image stack
dataset into a new tree structure represented by the xml
database. The object features such as contour length, area,
centroid and moments are important in implementing
contour object matching between two adjacent layers. These
features are calculated in the previous stage.

2D object recognition and matching is very important in
many areas and many methods have been proposed such as
template matching, string matching, shape-specific point
matching, principal axis matching, dynamic programming,
mutually-best matching, chamfer matching, graph matching,
relaxation, elastic matching, and etc [9] [10]. To simplify
our matching problem, we assume that each two contours
belonging to the same 3D component in two adjacent slices
will have the similar shapes. This essential assumption is
made based on the fact that adjacent slices are very close
and adjacent contours of the same object will differ by very
few pixel points. The experimental measurements taken
from this project indicate that the distances between two
adjacent slices are around 2.1um. In most cases, this
assumption is valid particularly when the contour shape

Object 3
O3

Object 2
O2

O1

2
O11

Object 1

O1

Image Background
B

Background

O1B

Backgroun

d
Object

O1

Object

O2

Object

O3

Background

O1B Object

O11

Object

O12

Image

OB

Original Images

Optimum Thredsholding

Binary Image

Object Boundaries

Xml Database

changes gradually and continuously. Fuzzy logic system
(FLS) is used to help in this case to refine the matching
decision. The inputs of the FLS include contour length, area
moments, contour centroid and overlapped areas of two
contours.

 The two stages are combined in a tree model where each
node in the tree is a representative of a segmented object
and each edge in the tree is a representative of contour
matching between two objects on adjacent slices.

Fig. 3. (a) Original Confocal microscopic image slice of Crayfish neuron
 (b) Enhanced contour image generated from the xml database

IV. 3D RECONSTRUCTION AND PARTIAL 3D RETRIEVAL

In this project, instead of interacting with original image
slices, 3D object reconstruction and partial 3D component
retrieval are based on the xml image database. The
procedure of describing a 3D image stack using the contour
xml tree data structure is stated in the following scenario:

1. Each segmented object in the image slice

corresponds to an object node in the xml file.
2. In the xml database, an object node has several

elements which define the object features.
3. Layer element determines to which layer the object

belongs. The objects on the same slice have the
equal layer values.

4. Link element indicates the centroid of the matched
contours on the next adjacent layer.

Fig. 4 shows an example of how a contour object is

represented in the xml database. In the xml database, each
object corresponds to a contour. Contour element records
the boundary pixels in the original image slice which
determine the contour shape.

Fig. 4 Contour objects in the xml database

Contour features are represented by the object elements
of Contour_Length, Area, Moment, Centroid and etc. They
are calculated once and can be easily extracted and
repeatedly used. We can add more features of contours by
defining more elements in the database. The database is
easily maintainable and lends itself for parallel
programming. The element Link and Layer in the xml
database determine the overall topology of the 3D image
structure.

 From the xml contour database, we can reconstruct the
solid object shape by first drawing the object boundary
according to each contour element and then fill the pixels
inside contour boundary using the original data. Applying
this process to all the contours which have the same Layer
value, we obtain all the segmented objects of an entire
image slice. To construct the 3D model of an image stack,
we repeat the refill process for all image slices and apply
surface rendering techniques to create the 3D model [11]
[12]. Fig. 5 is the 3D model rebuilt from our xml database
representing 20 crayfish neuron slices.

In the biological research, instead of requiring the whole
3D model, researchers may be interested in the local 3D
structures of specimens. For example, in Fig. 3 we know the
two highlighted contours belonging to the same neuron
branch. It may be useful for certain applications to retrieve
the 3D branch in which the 2D contours reside.

Fig. 5 3D model of a crayfish neuron confocal image stack

To fulfill the 3D partial retrieval, we use the xml tree

Matched contours on
adjacent image slices

...
<Object>
<Image_Name>01\lgaff049a01002.tif</Image_Name>
<Size>2048 2048</Size>
<Layer>3</Layer>
<Link>(1516 2020)</Link>
<Centroid>1504 2032</Centroid>
<Area>1762</Area>
<Location>(1466 2033)</Location>
<Contour_Length>546</Contour_Length>
<Contour>
 (1466,2033)(1466,2034)......
</Contour>
...
</Object>
...

structure described above for 3D content based component
retrieval. Since we use contours as the basic units to
represent the 3D volumetric data, the corresponding 3D
object can be divided into several components, each of
which is made of a group of connected contours. Given an
arbitrary pixel on a 2D image, we can easily identify its
corresponding contour. By applying a contour depth-first
search in the tree structure, we can again easily find the 3D
subcomponent in which the contour resides. Our
experimental data have shown that the 3D component
retrieval from the contour xml database is extremely faster
than retrieval from the original image slices. Fig. 6 shows
the result of 3D component by querying the database using
the pointed contours in Fig. 3.

Fig. 6 3D component of a crayfish neuron branch

Using the tree structure, image querying schema can be
extended by defining various searching rules for the xml
contour database.

3D image reconstruction and retrieval could be the
bottleneck of computing performance when large amounts
of image slices involved. Since the whole image stack
volume dataset has been stored in the contour based xml
database, an individual processor can interact with the xml
database efficiently without image loading operations and
preprocessing. The contour structured database makes the
distribution of the contour matching tasks among multiple
processors much simple. We designed two parallel
algorithms for 3D image reconstruction and retrieval
respectively. Since in the xml database, each contour has a
Link element indicating the matched contour on its
neighboring slice, and a Layer element indicating its slice
level, given a contour matching or retrieval task, a processor
thus can travel the tree structure database efficiently through
the two xml elements to find out its corresponding object
contour and repeatedly to form the 3D component without
communicating with other processors. Distributing retrieval
tasks among multiple processors is straightforward based on
the contour xml database. We implement the parallel
program in MPI on a SGI Origin 2000 machine and reach
the speedups of 8.36 and 11.08 by using 16 processors for
tree structure construction and 120 3D component
retrievals.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a novel tree structure for 3D

component reconstruction and retrieval. Image boundaries
or contours are proved to be more efficient in extracting and
handling 3D objects. We successfully defined a preliminary
model to segment image slices and group their related
contours into 3D object components. Our experimental
results indicated that, the contour structure is suitable for
both 3D reconstruction and partial 3D image retrieval. This
project represents a primary stage of a larger project aimed
at performing an automatic object retrieval and quantitative
analysis of neuron structure from confocal microscopy
imaging database.

As future extension of this work, a larger dataset is under
construction to have more tests performed to increase the
confidence on our scheme and to have a database with a
larger collection of biological data that can be retrieved and
analyzed more efficiently.

REFERENCES
[1] A. Sarti, Ortiz de Solorzano, C. Lockett and S. Malladi, “A Geometric

Model for 3-D Confocal Image Analysis”, IEEE Transactions on
Biomedical Engineering, Vol. 47, No 12, pp. 1600 – 1609, 2000.

[2] JR Glaser and EM Glaser, “Neuron Imaging with Neurolucida - A PC
Based System for Image Combining Microscopy”, Medical Imaging and
Graphics, Vol. 14, No. 5, pp 307-17, 1990.

[3] Mehta, B.V. and Marinescu, R. “Comparison of Image Generation and
Processing Techniques for 3D Reconstruction of the Human Skull”,
Proceedings of the 23rd Annual International Conference of the IEEE
Publication, Vol. 4, pp. 3687- 3690, 2001.

[4] W. Frei and C. C. Chen, “Fast Boundary Detection: A Generalization
and a New Algorithm”, IEEE Transaction Computer, Vol. C-26, No. 10,
pp. 988-988, 1977

[5] J. Canny, “A Computational Approach to Edge Detection”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, pp.
679-698, 1986.

[6] S. O. Belkasim, X. Hong, and O. Badir, “Content Based Image
Retrieval Using Discrete Wavelet Transform”, International journal of
Pattern Recognition and Artificial Intelligence, Vol. 18, No. 1, pp. 19-
32, 2004.

[7] S.O. Belkasim, Y. Li, E, Dogdu, X. Hong, Z. Li “Contented-Based
Image Retrieval in Biological Databases”. Int. Conf. on Computational
Intelligence, Istanbul, Turkey, pp. 512-515, 2004.

[8] Y. Li, S. Belkasim, Y. Pan, D. Edwards and B. Antonsen, "3D
Reconstruction Using Image Contour Data Structure", Proceedings of
IEEE-EMBC, Shanghai, China, 2005.

[9] Wen-Yen Wu and Mao-Jiun J. Wang, “Two-Dimensional Object
Recognition Through Two-Stage String Matching”, IEEE Transactions
of image processing. Vol. 8, No. 7, July 1999.

[10] R. C. Veltkamp and M. Hagedoorn, “State of the art in shape matching”,
Technical Report UU-CS-1999-27, Utrecht, 1999.

[11] D. Meyers and S Skinner, “Surfaces from Contours”, ACM
Transactions on Graphics, Vol. 11, No. 3, pp. 228-258, July 1992.

[12] R. A. Drebin, L. Carpenter and P. Hanrahan, “Volume rendering”,
Comput. Graphics., Vol. 22, no. 4, pp. 65-74, 1988.

	33674
	33675
	33676
	33677
	33678
	33679
	33680
	33681
	33682
	33683
	33684
	33685
	33686
	33687
	33688
	33689
	33690
	33691
	33692
	33693
	33694
	33695
	33696
	33697
	33698
	33699
	33700
	33701
	33702
	33703
	33704
	33705
	33706
	33707
	33708
	33709
	33710
	33711
	33712
	33713
	33714
	33715
	33716
	33717
	33718
	33719
	33720
	33721
	33722
	33723
	33724
	33725
	33726
	33727
	33728
	33729
	33730
	33731
	33732
	33733
	33734
	33735
	33736
	33737
	33738
	33739
	33740
	33741
	33742
	33743
	33744
	33745
	33746
	33747
	33748
	33749
	33750
	33751
	33752
	33753
	33754
	33755
	33756
	33757
	33758
	33759
	33760
	33761
	33762
	33763
	33764
	33765
	33766
	33767
	33768
	33769
	33770
	33771
	33772
	33773
	33774
	33775
	33776
	33777
	33778
	33779
	33780
	33781
	33782
	33783
	33784
	33785
	33786
	33787
	33788
	33789
	33790
	33791
	33792
	33793
	33794
	33795
	33796
	33797
	33798
	33799
	33800
	33801
	33802
	33803
	33804
	33805
	33806
	33807
	33808
	33809
	33810
	33811
	33812
	33813
	33814
	33815
	33816
	33817
	33818
	33819
	33820
	33821
	33822
	33823
	33824
	33825
	33826
	33827
	33828
	33829
	33830
	33831
	33832
	33833
	33834
	33835
	33836
	33837
	33838
	33839
	33840
	33841
	33842
	33843
	33844
	33845
	33846
	33847
	33848
	33849
	33850
	33851
	33852
	33853
	33854
	33855
	33856
	33857
	33858
	33859
	33860

